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A bit of history

Before 1970:
@ Operating systems written in Assembler
@ Hard to port, maintain, tedious and error prone to write
e Fast — C was too high-level (= slow)

o If you did it any other way. . .
...you were an idiot!
Written in C
Today:

@ All operating systems written in C
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Introducing opaal

opaal is a
@ distributed,
o discrete time
@ verification tool
o for uppaal Timed Automata
@ written in Python,
@ to make rapid prototyping.
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But why!

Why build opaal?
@ Its fun!
@ To learn

@ Nobody wants to touch uppaal

Why this technology?

@ We already knew how to parse uppaal xml files
o Big library of uppaal files
@ Python is a good prototyping language
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Goals

© Rapid prototyping
e Try out concepts quickly
o Before doing more time-consuming, optimised implementation
e Open Source
@ Easy to learn
o A group of 5th semester students should be able to implement
something in a project
o Readability, overview, loose coupling
© Implement the 20% of the optimisations that give 80% of the
speedup
e No gold plating
o Sufficiently fast
e We learn as we go
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Desired Architecture

| Successor generator | | Goal checker |

Model parser

Reachability

Implementation 1

Passed-Waiting list

Implementation n
Distributed met: st

Modelchecking algorithms

Liveness

User Interface

| Graphical | | Console
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Current Architecture

Goal checker
(Python interpreter eval)

Successor generator
(Python interpreter eval)

pyuppaal model parser
(Parse UPPAAL XML-files,
using discrete time semantics)

mple Python-based
PW-list

Passed-Waiting list

opaal Modelchecking algorithms

User Interface

| Graphical | |

stributed
(usin:

MPI)

(using GTK+) Console
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Current Status
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Current Problems

We are two slow (even for prototyping)

@ Python not suited for successor generator

@ Python PW-Ilist uses very general hash-table
Performance of Python successor generator:

@ About 10000 states/sec

@ Scaled up to 8 cores

@ 8 cores ~ 80000 states/sec ~ UPPAAL single core

@ Used up to 32Gb of RAM
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Current Status
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Ongoing Work

o Generate pyuppaal LLVM successor generator

o LLVM = high-level assembler
o Faster than C? (-O4!!)

@ Datastructures optimised for discrete time semantics
@ Passed-waiting list using slice memory allocator
e Memory allocator suited especially for many small allocations of same
size

@ Lattice Automata
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Future Work
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Future Work

Real-time support

Counter-Example Guided Abstraction Refinement
Support for other model (TAPN/TAPAAL)
Insert your idea here. ..

11/13



Future Work
[ ]

You can follow the project at
www.opaal-modelchecker.com
or at www.launchpad.net/opaal

Feel free to contact us at {kyrke,mchro}@cs.aau.dk, or #opaal @
irc.efnet.org
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