opaal

Kenneth Yrke Jgrgensen <kyrke@cs.aau.dk>,
Mads Chr. Olesen <mchro@cs.aau.dk>
opaal-modelchecker.com

9th MT-LAB workshop

August 24 2010

ard can it be to build a model checker?

How hard can it be to build a model
checker?

1/13

How hard can it be to build a model checker?
[]

It was a dark and stormy night. ..

How hard can it be to build a model checker?
L]

A bit of history

Before 1970:
@ Operating systems written in Assembler
@ Hard to port, maintain, tedious and error prone to write
e Fast — C was too high-level (= slow)

3/13

How hard can it be to build a model checker?
L]

A bit of history

Before 1970:
@ Operating systems written in Assembler
@ Hard to port, maintain, tedious and error prone to write
e Fast — C was too high-level (= slow)

If you did it any other way. ..

3/13

How hard can it be to build a model checker?
L]

A bit of history

Before 1970:
@ Operating systems written in Assembler
@ Hard to port, maintain, tedious and error prone to write
e Fast — C was too high-level (= slow)

If you did it any other way. ..

...you were an idiot!

3/13

How hard can it be to build a model checker?
L]

A bit of history

Before 1970:
@ Operating systems written in Assembler
@ Hard to port, maintain, tedious and error prone to write
e Fast — C was too high-level (= slow)

If you did it any other way. ..

...you were an idiot!

UNIX

3/13

How hard can it be to build a model checker?
L]

A bit of history

Before 1970:
@ Operating systems written in Assembler
@ Hard to port, maintain, tedious and error prone to write
e Fast — C was too high-level (= slow)

If you did it any other way. ..

...you were an idiot!

UNIX

Written in C

3/13

How hard can it be to build a model checker?
L]

A bit of history

Before 1970:
@ Operating systems written in Assembler
@ Hard to port, maintain, tedious and error prone to write
e Fast — C was too high-level (= slow)

o If you did it any other way. . .
...you were an idiot!
Written in C
Today:

@ All operating systems written in C

3/13

How hard can it be to build a model checker?
[]

Introducing opaal

opaal is a
@ distributed,
o discrete time
@ verification tool
o for uppaal Timed Automata
@ written in Python,
@ to make rapid prototyping.

4/13

How hard can it be to build a model checker?
[]

But why!

Why build opaal?
@ Its fun!
@ To learn

@ Nobody wants to touch uppaal

Why this technology?

@ We already knew how to parse uppaal xml files
o Big library of uppaal files
@ Python is a good prototyping language

5/13

How hard can it be to build a model checker?
L]

Goals

© Rapid prototyping
© Easy to learn
© Implement the 20% of the optimisations that give 80% of the speedup

6/13

How hard can it be to build a model checker?
L]

Goals

© Rapid prototyping
e Try out concepts quickly
o Before doing more time-consuming, optimised implementation
e Open Source

@ Easy to learn
© Implement the 20% of the optimisations that give 80% of the speedup

6/13

How hard can it be to build a model checker?
L]

Goals

© Rapid prototyping
e Try out concepts quickly
o Before doing more time-consuming, optimised implementation
e Open Source

@ Easy to learn

o A group of 5th semester students should be able to implement
something in a project
o Readability, overview, loose coupling

@ Implement the 20% of the optimisations that give 80% of the speedup

6/13

How hard can it be to build a model checker?
L]

Goals

© Rapid prototyping
e Try out concepts quickly
o Before doing more time-consuming, optimised implementation
e Open Source
@ Easy to learn
o A group of 5th semester students should be able to implement
something in a project
o Readability, overview, loose coupling
© Implement the 20% of the optimisations that give 80% of the
speedup
e No gold plating
o Sufficiently fast
e We learn as we go

6/13

d can it be to build a model checker?
[]

Desired Architecture

| Successor generator | | Goal checker |

Model parser

Reachability

Implementation 1

Passed-Waiting list

Implementation n
Distributed met: st

Modelchecking algorithms

Liveness

User Interface

| Graphical | | Console

7/13

Current Status
[]

Current Architecture

Goal checker
(Python interpreter eval)

Successor generator
(Python interpreter eval)

pyuppaal model parser
(Parse UPPAAL XML-files,
using discrete time semantics)

mple Python-based
PW-list

Passed-Waiting list

opaal Modelchecking algorithms

User Interface

| Graphical | |

stributed
(usin:

MPI)

(using GTK+) Console

8/13

Current Status
L]

Current Problems

We are two slow (even for prototyping)

@ Python not suited for successor generator

@ Python PW-Ilist uses very general hash-table
Performance of Python successor generator:

@ About 10000 states/sec

@ Scaled up to 8 cores

@ 8 cores ~ 80000 states/sec ~ UPPAAL single core

@ Used up to 32Gb of RAM

9/13

Current Status
[]

Ongoing Work

o Generate pyuppaal LLVM successor generator

o LLVM = high-level assembler
o Faster than C? (-O4!!)

@ Datastructures optimised for discrete time semantics
@ Passed-waiting list using slice memory allocator
e Memory allocator suited especially for many small allocations of same
size

@ Lattice Automata

10/13

Future Work
[]

Future Work

Real-time support

Counter-Example Guided Abstraction Refinement
Support for other model (TAPN/TAPAAL)
Insert your idea here. ..

11/13

Future Work
[]

You can follow the project at
www.opaal-modelchecker.com
or at www.launchpad.net/opaal

Feel free to contact us at {kyrke,mchro}@cs.aau.dk, or #opaal @
irc.efnet.org

12/13

@ How hard can it be to build a model checker?
@ |t was a dark and stormy night. ..
@ A bit of history
@ Introducing opaal
e But why!
@ Goals
@ Desired Architecture

© Current Status
@ Current Architecture
@ Current Problems
@ Ongoing Work

© Future Work
@ Future Work
@ About

	How hard can it be to build a model checker?
	It was a dark and stormy night…
	A bit of history
	Introducing opaal
	But why!
	Goals
	Desired Architecture

	Current Status
	Current Architecture
	Current Problems
	Ongoing Work

	Future Work
	Future Work
	About

	Appendix

